
Software-defined

Networking

Nick McKeown

nickm@stanford.edu

Infocom, April 2009

Part 1: Inside the box

Switch and Router Design

Part 2: Outside the box

Software-defined networking

Hardware

Datapath

Router

Software

Control

Management: CLI, SNMP

Routing Protocols: OSPF, ISIS, BGP

Per-packet: Lookup, switch, buffer

IP Address Lookup

& Classification

Crossbar

Scheduler

How big should buffers be? [1/ N]

How to build really fast buffers? [Nemo]

Which schedulers give 100% throughput? [MWM]

Which schedulers are practical in hardware? [iSLIP]

How to schedule multicast? [ESLIP]

How to run the scheduler slower? [PPS]

How to avoid scheduling altogether? [VLB]

How to emulate an output queued switch? [MUCFA]

How to lookup quickly in hardware? [24-8]

Heuristic classification algorithms [HiCuts]

Three Open Topics

1. Thereôs something special about

ñ2x speedupò

2. Deterministic (instead of probabilistic)

switch design

3. Making routers simpler

Three Open Topics

1. Thereôs something special about

ñ2x speedupò

A maximal match crossbar scheduler gives

100% throughput [Dai&Prabhakar]

Makes a Clos network strictly non-blocking

[Clos]

Allows a CIOQ switch to precisely emulate an

output-queued switch [Chuang]

Three Open Topics

1. Thereôs something special about

ñ2x speedupò (contd.)

Allows a parallel stack of small switches to

precisely emulate one big switch [Iyer]

Valiant Load-Balanced switch (or network)

can give 100% throughput [Valiant]

Related observations

ñ2x speedupò is key for both deterministic &

probabilistic systems

A maximum size bipartite match is at most

twice the size of a maximal match

A switch has two simultaneous constraints:

input and output

Local ñselfishò routing decisions cost twice as

much as ñglobalò ones [Roughgarden]

Three Open Topics

1. Thereôs something special about

ñ2x speedupò

2. Deterministic (instead of probabilistic)

switch design

We need more analytical tools for ñmimickingò

Generalized pigeon-hole principles

3. Making routers simpler

Three Open Topics

1. Thereôs something special about

ñ2x speedupò

2. Deterministic (instead of probabilistic)

switch design

1. Making routers simpler

Million of lines

of source code

5389 RFCs Barrier to entry

500M gates

10Gbytes RAM

Bloated Power Hungry

Many complex functions baked into the infrastructure
OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewalls, MPLS, redundant layers, é

We have lost our way

Hardware

Datapath

Router

Software

Control

Process of innovation

Almost no technology transfer

from academia

Deployment

Idea Standardize

Wait 10 years

Personal regret

I wish I had said it sooner and louder

Our ñdumb, minimalò

datapath turned into a

bloated 1960s mainframe!

The essence of my talk (1 of 2)

Hardware Substrate

The PC industry found a simple, common,

hardware substrate (x86 instruction set)

Software-definition

Innovation exploded on top (applications) and

in the infrastructure itself (operating systems,

virtualization)

Open-source

100,000s of developers blew apart the

standards process, accelerated innovation

The essence of my talk (2 of 2)

It is up to us to make it happen.

Until we (someone) does, it remains ossified.

Letôs define the substrate.

Hardware

Substrate

Open Source

Culture

Software-Defined

Network

Part 1: Inside the box

Part 2: Outside the box

The need for a substrate

The inevitability of software-defined

networking

Computer

Application

Computer

Application Application

OS

OS abstracts hardware substrate

Ą Innovation in applications

x86

(Computer)

Windows

(OS)

ApplicationApplication

Linux
Mac

OS

x86

(Computer)

Windows

(OS)
or or

ApplicationApplication

Simple, common, stable, hardware substrate below

+ Programmability

+ Competition

Ą Innovation in OS and applications

Linux
Mac

OS

x86

(Computer)

Windows

(OS)
or or

ApplicationApplication Windows

(OS)
Windows

(OS)
Linux

Mac

OS

x86

(Computer)

Windows

(OS)

AppApp

LinuxLinux
Mac

OS
Mac

OS

Virtualization

App

Simple, common, stable, hardware substrate below

+ Programmability

+ Strong isolation model

+ Competition above

Ą Innovation in infrastructure

A simple stable common substrate

1. Allows applications to flourish

Internet: Stable IPv4 lead to the web

2. Allows the infrastructure on top to be

defined in software

Internet: Routing protocols, management, é

3. Rapid innovation of the infrastructure itself

Internet: er...? Whatôs missing? What is the

substrateé?

Mid-1990s:

ñTo enable innovation in the

network, we need to program on

top of a simple hardware

datapathò

Problems: isolation, performance,

complexity

Active networking

Late-1990s:

ñTo enable innovation in the

network, we need the datapath

substrate to be programmableò

Problem: Accelerated complexity

of the datapath substrate

Network processors

(Statement of the obvious)

In networking, despite several attemptsé

Weôve never agreed upon a clean separation

between:

1. A simple common hardware substrate

2. And an open programming environment on top

But things are changing fast in

data centers and service provider networks.

Observations

Prior attempts have generally

1. Assumed the current IP routing substrate

is fixed, and tried to program it externally

Including the routing protocols

2. Defined the programming and control

model up-front

But to pick the right x86 instruction set, Intel

didnôt define Windows XP, Linux or VMware

We needé

1. A clean separation between the substrate

and an open programming environment

2. A simple hardware substrate that

generalizes, subsumes and simplifies the

current substrate

3. Very few preconceived ideas about how

the substrate will be programmed

4. Strong isolation

New function!

Operators, users, 3rd party developers, researchers, é

Step 1:
Separate intelligence from datapath

We needé

1. A clean separation between the substrate

and an open programming environment

2. A simple hardware substrate that

generalizes, subsumes and simplifies the

current substrate

3. Very few preconceived ideas about how

the substrate will be programmed

4. Strong isolation

Step 2: Cache decisions in minimal

flow-based datapath

ñIf header = x, send to port 4ò

Flow

Table

ñIf header = ?, send to meò

ñIf header =y, overwrite header with z, send to ports 5,6ò

1.

Unicast

2.
Multicast

